Fusão Nuclear

Fusão Nuclear é a união de pequenos núcleos atômicos, que formarão um núcleo maior e mais estável. Essa é a fonte de energia e vida das estrelas; um exemplo é o Sol: em seu núcleo ocorrem reações de fusão de hidrogênios originando núcleos de hélio.

A primeira bomba de hidrogênio foi lançada no Atol de Biquíni, em testes nucleares

Fusão Nuclear é a união de pequenos núcleos atômicos, que formarão um núcleo maior e mais estável.

A fusão é mais fácil com núcleos pequenos porque, uma vez que é necessário haver a colisão e a junção de dois núcleos, a repulsão das cargas positivas desses núcleos será menor. Mesmo assim, é necessária uma energia cinética muito alta para vencer essa repulsão e gerar a colisão.

Abaixo temos um exemplo de fusão nuclear em que se fundem dois núcleos, um de deutério e um de trítio, produzindo átomos de hélio:

Esse tipo de reação é a fonte de energia das estrelas como o Sol. Ele é composto de 73% de hidrogênio, 26% de hélio e 1% de outros elementos. Isso é explicado pelo fato de ocorrerem reações em seu núcleo, conforme mostrado anteriormente, em que átomos de hidrogênio se fundem originando átomos de hélio.


As reações de fusão do hidrogênio são a fonte de energia das estrelas, incluindo o Sol.

A quantidade de energia liberada nessa reação é milhões de vezes maior que a energia de uma reação química comum, e é dois milhões de vezes maior que a energia liberada pela fissão nuclear. Em 1952, o mundo pôde ver o poder dessa reação nuclear quando os EUA lançaram em um atol do Pacífico, a primeira bomba de hidrogênio (“Mike”); esta teve potência mil vezes maior que as bombas de Hiroshima e Nagasaki. O atol foi literalmente vaporizado.

Em razão dessa alta energia liberada, o sonho de muitos cientistas é produzir energia por meio desse tipo de reação. No entanto, isso ainda não é possível, porque reações desse tipo somente ocorrem em temperaturas elevadíssimas, como ocorre no Sol. E não é possível trabalhar ainda de maneira controlada com materiais a milhares de graus Celsius.

Mas os cientistas não desistem. Abaixo temos uma imagem e uma foto real de um tipo de reator, chamado de tokamak. Esses tipos de reatores conseguem suportar temperaturas altas, mantendo um plasma longe das paredes, durante pouco tempo, e usando técnicas de confinamento magnético.

Esses tipos de reatores estão sendo testados. E as tentativas não param, afinal de contas a fusão de apenas 2 . 10-9 % do deutério daria para fornecer energia elétrica para o mundo inteiro durante um ano.


Ilustração à esquerda e imagem real à direita de reator do tipo tokamak, que está sendo testado para gerar energia por meio de fusão nuclear.

Por Jennifer Fogaça
Graduada em Química
Equipe Brasil Escola

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

FOGAçA, Jennifer Rocha Vargas. "Fusão Nuclear"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/quimica/fusao-nuclear.htm. Acesso em 27 de abril de 2024.

De estudante para estudante


Lista de exercícios


Exercício 1

Para ser utilizado em reatores nucleares de fusão, o trítio pode ser produzido em escala industrial por meio do seguinte processo:

36Li + 01n → 13H + X

Uma possível reação nuclear de fusão pode ser dada pela equação:

Deutério + trítio → nêutron + Y

X e Y nas equações nucleares acima são:

  1. 24α. e -10β.

  2. 01n e 13H.

  3. 12H e 24He.

  4. 24He e 24He.

  1. 01n e 24He.

Exercício 2

Assinale qual das reações abaixo é um processo de fusão nuclear:

  1. 2 13H →  24He + 2 01n+ energia

  2. 92235U + 01n → 3890Sr + 54143Xe + 3 01n + energia

  3. Zn + 2HCl → ZnCl2 + H2

  4. 614C    → 714N   + 0-1β 

  1. 92238U → 42α2+ + 90234Th