Movimento oscilatório

O movimento oscilatório pode ser descrito como um movimento de vai e vem dos corpos, podendo estes voltarem ou não para o ponto de início.

O movimento da mola é um exemplo de movimento oscilatório.

O movimento oscilatório é caracterizado por uma oscilação que acontece quando retiramos o corpo da sua posição de equilíbrio. Ele pode ser períodico, em que não há perda de energia, ou pode ser não períodico, em que há perda de energia durante o movimento.

Leia também: Como saber a quantidade de movimento?

Resumo sobre o movimento oscilatório

  • Pode ser descrito como um movimento de vai e vem dos corpos, podendo estes voltarem ou não para o ponto de início.

  • É caracterizado por ser períodico ou não e também pela inversão no sentido do movimento.

  • Suas formas mais comuns se dão pelo pêndulo simples e no movimento harmônico simples (MHS).

  • São exemplos dele o movimento do bater de asas e o do pular a corda.

  • Seu período é o inverso da frequência, sendo o intervalo de tempo necessário para finalizar uma oscilação.

  • Uma das formas de descrevê-lo é pela função horária da posição do movimento harmônico simples (MHS), que tem a seguinte fórmula:

  • Outra forma de descrevê-lo é pela função horária da velocidade do movimento harmônico simples (MHS), que tem a seguinte fórmula:

  • Outra forma ainda de descrevê-lo é pela função horária da aceleração do movimento harmônico simples (MHS), que tem a seguinte fórmula:

O que é movimento oscilatório?

Também conhecido como oscilação, o movimento oscilatório ocorre quando deslocamos um corpo (ou partícula) da sua posição de equilíbrio (posição de repouso) e o soltamos, o que faz com que ele instantaneamente busque retornar a essa posição por meio de um movimento de “vai e volta”, que corresponde a uma inversão no sentido do movimento. 

Esse movimento pode ser períodico, quando a posição, velocidade e aceleração do corpo que está oscilando se repetem com o mesmo intervalo de tempo, sem perdas de energia para o meio, como é o caso do movimento de uma mola no vácuo; ou pode ser não períodico, quando o corpo oscila e vai perdendo energia até que fique em repouso, como é o caso do pêndulo de Newton.

Movimento de um pêndulo simples.

Todo movimento que oscila pode ser considerado uma forma de movimento oscilatório, como o movimento circular uniforme (movimento em trajetórias circulares), o movimento de um pêndulo simples (movimento de um corpo preso em um fio), ou o movimento harmônico simples (movimento oscilatório períodico). 

Exemplos de movimento oscilatório

Existem diversos exemplos do movimento oscilatório que podem ser observados em nosso cotidiano, como:

  • O movimento do pêndulo ou oscilador no interior dos relógios de parede.

  • O pêndulo de Newton, cujas bolinhas descrevem um movimento oscilatório.

  • O movimento das molas de colchões, redes e balanços.

  • Os brinquedos decorativos colocados no interior do carro que oscilam no menor movimento, por serem feitos de mola.

  • O bater das assas dos pássaros ocorre de maneira rítmica, como um movimento oscilatório.

  • Quando pulamos corda, ela é batida em um padrão oscilatório.

Período do movimento oscilatório

O período do movimento oscilatório é definido como o tempo levado para concluir uma oscilação ou ciclo, sua unidade de medida é o segundo. Ele é calculado pela fórmula:

  • T → período de oscilação, medido em segundos .

  • → variação de tempo, medida em segundos .

  • n  → número de oscilações.

O período do movimento oscilatório é considerado o inverso da frequência do movimento oscilatório, definida como a quantidade de oscilações por tempo, e é calculado pela fórmula:

  • T → período de oscilação, medido em segundos .

  • f → frequência de oscilação, medida em Hertz .

O período do movimento oscilatório também pode ser calculado pela fórmula da velocidade angular:

  • ω → velocidade angular, medida em .

  • T → período de oscilação, medido em segundos .

A frequência também pode ser calculada pela fórmula da velocidade angular:

  • ω → velocidade angular, medida em .

  • f → frequência de oscilação, medida em Hertz .

Fórmulas do movimento oscilatório

O movimento oscilatório pode ser descrito pelas função horária da posição do MHS, função horária da velocidade do MHS e função horária da aceleração do MHS.

→ Função horária da posição do movimento harmônico simples (MHS)

  •  posição em função do tempo, medida em metros .

  • A amplitude da onda, medida em metros .

  •  fase do movimento.

  • ω velocidade angular, medida em .

  • t tempo, medido em segundos .

  •  constante de fase.

Exemplo:

Qual a função horária da posição de um oscilador harmônico que apresenta amplitude de 4 metros, velocidade angular de 2 rad/s e constante de fase igual a π?

Resolução:

A função horária da posição de oscilador harmônico é dada pela fórmula:

Substituindo os valores dados no enunciado, obteremos a função para esse caso:

→ Função horária da velocidade do movimento harmônico simples (MHS)

  • velocidade em função do tempo, medida em metros .

  • A amplitude da onda, medida em metros .

  •  fase do movimento.

  • ω velocidade angular, medida em .

  • t tempo, medido em segundos .

  •  constante de fase.

Exemplo:

Qual a função horária da velocidade de um oscilador harmônico que apresenta amplitude de 1,5 m, velocidade angular de 0,2 rad/s e constante de fase igual a  ?

Resolução:

A função horária da velocidade de oscilador harmônico é dada pela fórmula:

Substituindo os valores dados no enunciado, obteremos a função para esse caso:

→ Função horária da aceleração do movimento harmônico simples (MHS)

  •  aceleração em função do tempo, medida em metros .

  • A amplitude da onda, medida em metros .

  •  fase do movimento.

  • ω velocidade angular, medida em .

  • t tempo, medido em segundos .

  •  constante de fase.

A aceleração máxima é dada pela equação:

  •  aceleração em função do tempo, medida em metros .

  • ω velocidade angular, medida em .

  •  posição em função do tempo, medida em metros .

Exemplo:

Qual a função horária da aceleração de um oscilador harmônico que apresenta amplitude de 3 m, velocidade angular de 8 rad/s e constante de fase igual a 2π?

Resolução:

A função horária da aceleração de oscilador harmônico é dada pela fórmula:

Substituindo os valores dados no enunciado, obteremos a função para esse caso:

Veja também: Quais são as funções horárias que descrevem o movimento de queda livre?

Exercícios resolvidos sobre movimento oscilatório

Questão 1

Um pêndulo se locomove com uma velocidade angular de . Com base nisso, encontre a sua frequência de oscilação.

A) 0,125 Hz

B) 0,250 Hz

C) 0,500 Hz

D) 1,000 Hz

E) 2,000 Hz

Resolução:

Alternativa A

Calcularemos a frequência do movimento pela fórmula da velocidade angular:

Questão 2

(Osec) Um móvel executa um movimento harmônico simples de equação

Onde t é dado em segundos e x em metros. Após 2,0 s, a elongação do movimento é:

A) zero

B) 2,0 m

C) 3,5 m

D) 5,7 m

E) 8,0 m

Resolução:

Alternativa D

A elongação do movimento é encontrada quando igualamos o tempo a 2 segundos na sua equação:

 

Por Pâmella Raphaella Melo
Professora de Física

Gostaria de fazer a referência deste texto em um trabalho escolar ou acadêmico? Veja:

MELO, Pâmella Raphaella. "Movimento oscilatório"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/fisica/movimento-oscilatorio.htm. Acesso em 28 de abril de 2024.

De estudante para estudante


Lista de exercícios


Exercício 1

(Unitau) Um corpo de massa m, ligado a uma mola de constante elástica k, está animado de um movimento harmônico simples. Nos pontos em que ocorre a inversão no sentido do movimento:

A) são nulas a velocidade e a aceleração.

B) são nulas a velocidade e a energia potencial.

C) o módulo da aceleração e a energia potencial são máximos.

D) a energia cinética é máxima e a energia potencial é mínima.

E) a velocidade, em módulo, e a energia potencial são máximas.

Exercício 2

(UFGD) Uma oscilação harmônica é conhecida por ter força de restauração proporcional ao deslocamento. Para esse tipo de oscilação, é possível dizer que:

A) A frequência de oscilação independe do valor da força restauradora.

B) A frequência da energia total do oscilador independe do valor da força restauradora.

C) O período é o mesmo para qualquer valor da força restauradora.

D) O período depende do valor da energia mecânica do sistema.

E) A energia mecânica do sistema é constante.