Texto -A +A

O que é Equação do 2° Grau?

O que é Matemática?

Toda equação do tipo ax² + bx + c = 0 é uma equação do 2° grau. Uma das formas de resolvê-la é através da Fórmula de Bhaskara.
Publicidade

Uma equação do 2° grau é toda e qualquer equação com uma incógnita que é expressa da seguinte forma:

ax2 + bx + c = 0, a ≠ 0

A letra x é a incógnita, e as letras a, b e c são números reais que exercem a função de coeficientes da equação. Apenas o coeficiente a deve ser diferente de zero. Se nenhum dos coeficientes for nulo, dizemos que se trata de uma equação completa; mas se algum dos coeficientes b e c for zero, dizemos que é uma equação incompleta.

Quando resolvemos uma equação do 2° grau, podemos encontrar até dois resultados. Esses valores são chamados de raízes da equação. Veremos neste artigo como determinar as raízes de uma equação do 2° grau.

Seja a equação do 2° grau completa ou incompleta, podemos utilizar a Fórmula de Bhaskara para encontrar suas raízes. A fórmula de Bhaskara apresenta-se da seguinte forma:

Apenas para simplificar a notação, comumente chamamos a expressão dentro da raiz quadrada de delta (). Calculando o separadamente, nós podemos escrever a fórmula de Bhaskara da seguinte forma:

Caso o valor de delta seja menor que zero, dizemos que a equação do 2° grau não possui raízes reais. Se o delta for igual a zero, a equação terá duas raízes idênticas. Caso o delta seja maior que zero, a equação do 2° grau terá duas raízes distintas.

Vamos ver um exemplo de resolução de uma equação do 2° grau através da fórmula de Bhaskara.

x² + 3x + 2 = 0

Os coeficientes dessa equação são: a = 1, b = 3 e c = 2. Vamos calcular primeiramente o valor de delta:

= b² – 4.a.c

= 3² – 4.1.2

= 9 – 8

= 1

Agora que encontramos o valor de delta, vamos substituí-lo na Fórmula de Bhaskara para determinar as raízes de x:

x = – b ± √∆
      2.a

x = – 3 ± √1
      2.1

x = – 3 ± 1
      2

O sinal de ± resulta em duas raízes da equação. Dessa forma, primeiro encontraremos x', através do sinal +, e, em seguida, encontraremos x'', através do sinal de :

x' = – 3 + 1
       2

x' = – 2
        2

x' = – 1

x'' = – 3 – 1
        2

x'' = – 4
       2

x'' = – 2

As raízes da equação x² + 3x + 2 = 0 são – 1 e – 2.

Caso a equação do 2° grau seja incompleta, podemos resolvê-la sem utilizar a fórmula de Bhaskara através dos princípios básicos da resolução de equações.


Por Amanda Gonçalves
Graduada em Matemática

Publicidade

Dica de Português

Enem 2017

Enem

Baleia Azul

Baleia Azul

Por que vacinar?

Atualidades